
www.manaraa.com

Under onsideration for publiation in J. Funtional Programming 1Web Programming in Sheme -the LAML approahKURT N�RMARKDepartment of Computer SieneAalborg UniversityDenmark(e-mail: normark�s.au.dk)AbstratFuntional programming �ts well with the use of desriptive markup in HTML and XML.There is also a good �t between S-expressions in Lisp and the means of expression in HTMLand XML. These similarities are exploited in LAML (Lisp Abstrated Markup Language)whih is a software pakage for Sheme. LAML supports exat mirrors of di�erent versionsof HTML. In the mirrors eah HTML element is represented by a named Sheme funtion.The mirror funtions guarantee that the generated HTML ode is valid. LAML has beenused for both server side CGI programming and programmati authoring of non-trivialstati web materials. The programmati LAML author an use the power of funtionalprogramming for the prodution of everyday web douments. Equally important, it isstraightforward to de�ne domain-spei� web languages in Sheme syntax whih parallelthe advantages of XML. 1 IntrodutionIn this paper we disuss the use of Sheme (Kelsey et al., 1998) in the domain ofweb programming. Web programming overs both the WWW server side, the lientside (browsers), and tools that generate web ontents. We will primarily report onexperiene with Sheme programming in the domain of tools that generate statiweb ontents, but we will also touh on CGI programming of web servers.Almost any non-trivial web development e�ort involves some kind of program-ming side by side with use of a markup language (HTML or XML). In many ontextsthe soure douments are written as a mix of fragments from a markup languageand an imperative programming language. Suh mixed soure douments typiallyrepresent a lash between languages from two di�erent ultures: The SGML ulture(Bradley, 1997) and the ulture of imperative programming. The main reason be-hind this state of a�airs is a desire to separate the authoring of web ontents fromprogramming, not least beause only relatively few web developers master bothareas. We see three major problems with this mixed approah:1. The borderline problem. Mixing markup and program fragments in asingle doument reates borderlines between two linguisti universes whihannot smoothly interat with eah other. As a onrete example, server pages

www.manaraa.com

in the style of ASP, PHP, and JSP make it diÆult to apply the prinipleof abstration as stated by Tennent (Tennent, 1981). (See Meijer's and vanVelzen's disussion (Meijer & van Velzen, 2001)[Setion 2.2℄ for a onviningargument and an example of this problem).2. The aestheti problem. The mixing of two languages in a single doumentgives a onfusing impression, and it almost ertainly eliminates any remainingrest of elegane in the soure doument.3. The imperative programming problem. There is an evident mis�t be-tween imperative program fragments and fragments of HTML or XML thatuse desriptive markup (Coombs et al., 1987).The LAML approah ontributes with solutions to all three problems. First, weeliminate diret use of the markup language in web douments by mirroring theelements of the markup language in the abstrations of a programming language. Itimplies that the markup aspets are made available through the abstrations of theprogramming language. With this, we provide for use of only a single language - theprogramming language. This eliminates the borderline problem mentioned above.As a onsequene, any programmati means of expression an be used togetherwith even the �nest details of the markup language. If the mirror is omplete andaurate, this approah ensures that the full expressiveness of the markup languageis kept intat at the programmati level.Seond, we propose the use of a funtional programming language instead of usingan imperative language. The delarative style of funtional programming �ts wellwith the use of desriptive markup, whih today dominates earlier use of proeduralmarkup (whih is more akin to ommands in the imperative style). In the same vein,the nesting of markup elements has a natural ounterpart in nested expressions,but it runs ounter to the use of imperative ommands, whih annot be nested ina similarly diret fashion.By using the LAML approah, we maximize the utilization of programmatimeans in web douments. As the best illustration, we write stati douments di-retly in Sheme. Simple douments use almost exlusively the HTML mirror fun-tions, whereas more ompliated web douments draw on the advantages of pro-grammati solutions, suh as onditional branhing, organization of data in listswith aompanying iterations, and de�nition of abstrations with the goal of mas-tering the omplexity of the doument.As it appears, we have gone for an inlusion of the markup language in the pro-gramming language by means of mirroring (to be explained in setion 2.1.) If weompare markup languages with programming languages on the ground of omputa-tional power, the weak language has been mirrored in the strong language. We haverejeted the idea of mixing the two languages due to the problems listed above.But yet a third relationship would be possible, namely an inlusion of program-ming apabilities in the markup language. With this, programmati solutions anbe expressed in the markup language without resorting to solutions, where pieesof foreign program fragments pollute the web doument. We are aware of a fewof attempts in this diretion (Glikstein, 1999; Krishnamurthi et al., 2000; Niol,2

www.manaraa.com

2000)|all somehow related to Sheme. From a omparison of these with LAML itis safe to onlude that it is easier to subsume the markup language as abstrationsin a funtional programming language than the other way around.Although Sheme has strong roots in the funtional programming paradigm,Sheme is not a pure funtional programming language. In our work on LAML,inluding the LAML-based tools and appliations, we strive for solutions in thefuntional programming style. However, we have had at least two reasons to deviatefrom this ourse:� Adaptions to the surrounding imperative world.Web appliations arepart of a ontext in whih mutable state is a fat of live. Therefore it is notpossible to ignore imperative solutions entirely in LAML-based appliations.� Imperative pathing of a funtional program. In some situations, ahange of a funtional program will be unreasonably ompliated on fun-tional ground, but straightforward if you introdue an imperative path. Ina number of the major LAML appliation, this is the main reason of themultiparadigmati style found in these programs.In the rest of the paper we will �rst|in setion 2|desribe how the markuplanguage is made available as an \HTML mirror" in Sheme. In setion 3 we dis-uss how to use the HTML mirror funtions together with higher-order Shemefuntions. In setion 4 we disuss the role and the potential of abstration with thegoal of obtaining soure douments at a higher level. This inludes the de�nitionof new domain spei� Sheme-based languages. Setion 5 gives a brief overview ofLAML, regarded as a system of doument styles, tools, and environmental support.The paper is �nalized by an overview of similar work and a onlusion.All the examples of the paper are available on-line (N�rmark, 2002) in the formatsof LAML soure douments, HTML target �les, and as `verbatim HTML �les'(whih allow the interested readers to view the details of the generated HTMLdouments). 2 Markup language mirroringWe use Sheme as the doument soure language for web pages and web sites.In other words, the soure of a web page, or a set of interlinked web pages, is aSheme program. Figure 1 shows an example of a web doument written in Shemeby means of the HTML mirror funtions. Notie that typial LAML doumentswould inlude other Sheme aspets. One of the main points of bringing HTMLinto a funtional programming language is to use the potential of abstration, suhthat the doument an be handled at a higher level. We will return to this in setion4. 2.1 Basi mirroringThe markup language, suh as HTML, is made available in the programming lan-guage by means ofmirroring. Formally, a mirror �maps eah element of the markuplanguage to a funtion in the programming language.3

www.manaraa.com

(load (string-append laml-dir "laml.sm"))(laml-style "simple-html4.01-transitional-validating")(write-html '(pp)(html(head(title "WEB Programming in Sheme - the LAML approah"))(body(h1 "WEB Programming in Sheme - the LAML approah")(p "The paper"(a 'href "http://www.s.au.dk/~normark/laml/papers/jfp.pdf"(em "WEB Programming in Sheme - the LAML approah"))"is written for people who are interested in funtional programming.""The" (a 'href "abstrat.html" "abstrat") "is available as a separate page.")(p "The paper ontains the following setions:")(ol(li "Introdution")(li "Markup language mirroring")(li "Programming with the HTML mirror funtions")(li "Raising the level of abstration")(li "LAML overview")(li "Refletions and similar work")(li "Conlusions"))(p "There exists other papers about LAML, suh as:")(ul(li (a 'href "http://www.s.au.dk/~normark/laml/papers/www2002/p296-normark.html""Programmati WWW authoring using Sheme and LAML")))(p "Kurt Normark" (br) "normark�s.au.dk" (br)(a 'href "http://www.s.au.dk/~normark" "http://www.s.au.dk/~normark")))))Fig. 1: A sample web doument written in Sheme with use of LAML.�: Markup Element ! Sheme FuntionWe have hosen to pre-apply � on every element in the markup language, herebyreating a relative large number of Sheme funtions (91 for HTML4.01 transitional,and 77 for XHTML1.0 strit) eah of whih we bind to a variable of the same nameas the markup element. (In HTML this auses a single name lash, between the mapelement and the essential Sheme proedure map. The lash is handled by pre�xingthe mirror of the map element with \html:".) As an alternative we ould generatethe mirror funtions on demand, and avoid the name bindings, but we �nd thatthis would blur the lexial and syntatial similarity between a LAML doumentand an HTML/XML doument.The following shows a sample appliation of � on the HTML a anhor element:� (the HTML a element) = [(generate-html-funtion "a" 'double)℄4

www.manaraa.com

The higher-order funtion generate-html-funtion generates the mirror funtionbased on the tag name and the fat that it is an element with both start and endtag.The parameter pro�les of the generated funtions, suh as the funtions a, img,and p, are hosen as lose as possible to the ounterparts in the markup language,with a few onvenient generalizations and extensions. Basially and intuitively, theSheme form(tag 'a1 "v1" ... 'am "vm" ontents)orresponds to the HTML fragment<tag a1 = "v1" ... am = "vm"> ontents</tag>In the Sheme form 'a1 ... 'am are symbols and "v1" ... "vm" are strings. Theontents onstituent represents zero, one or more ontents elements in terms ofstrings or ativations of mirror funtions. The atual orrespondene is riher andslightly more ompliated, as reeted by the rules desribed below.The generated mirror funtions eah returns a value, whih we below will onsideras a string. In the most reent version of the HTML mirror the mirror funtionsreturn abstrat syntax trees (represented as nested lists) whih eventually will tobe transformed to strings. The funtion render performs this transformation.The HTML mirror funtions obey the following rules:� Rule 1. An attribute name is a symbol in Sheme, whih must be followedby a string that plays the role as the attribute's value.� Rule 2. Parameters whih do not follow a symbol are ontent elements(strings or instanes of elements).� Rule 3. All ontent elements are impliitly separated by white spae.With these rules, we see that the expression(p (a 'href "http://www.ds.glasgow.a.uk/jfp""Journal of" (em "funtional programming")))will be rendered as<p>Journal of funtional programming</p>Here and in the following we will show manually pretty printed HTML fragments.HTML pretty printing is available as an option in the latest version of the mirrorfuntions.The mutual order of attributes and ontent elements do not matter as long asrule number 1 is obeyed. Thus, the expression5

www.manaraa.com

(p (a "Journal of" 'href "http://www.ds.glasgow.a.uk/jfp"(em "funtional programming")))gives the same result as shown above.The rationale behind rule number 3 (white spae between strings) is to supportthe most typial situation without use of additional elements. In the ases wherewe want to suppress white spae we rely on the rule:� Rule 4. A boolean false value (whih we onveniently bind to a variablenamed undersore) suppresses white spae at the loation where the booleanvalue appears.Thus, the expression(p "Use" (kbd "HTML") _ "," (kbd "XHTML") _ ","(kbd "XML")_ "," "or" (kbd "LAML") _ ".")suppresses white spae before the puntuations.In addition we support the rule:� Rule 5. Every plae an attribute or a ontent element is aepted we alsoaept a list, the elements of whih are proessed reursively and splied intothe result.Thus, the following is a legal LAML expression(ul (map li (list "one" "two" "three")))whih is rendered asone two threeThe following expression illustrates the versatility of Rule 5:(body(let ((attributes (list 'start "3" 'ompat "ompat"))(ontents (map li (list "one" "two" "three"))))(ol 'id "demo" ontents (li "final") attributes)))The result is rendered as:<body><ol id = "demo" start = "3" ompat = "ompat">one two three final</body>As it appears, both fragments of the ontents and fragments of the attribute listsmay be represented and passed as lists side by side with singular ontents elementsand attributes. More examples and additional disussion of the onsequenes ofRule 5 are found in setion 3.Finally, the LAML mirror of HTML treats HTML attributes and CSS attributes(Casading Style Sheet attributes (Bos et al., 1998)) uniformly, via use of the fol-lowing onvention: 6

www.manaraa.com

� Rule 6. An attribute with the name \ss:a" refers to the a attribute in CSS.Inline use of CSS attributes, as opposed to use of external style sheets, is quiteuseful when new layers of funtions are reated on top of the mirror funtions. Asan example that depends on Rule 6, the expression(em 'ss:bakground-olor "yellow" "JFP")is rendered as<em style = "bakground-olor: yellow;">JFPWithout Rule 6, we should have used the following LAML expression(em 'style "bakground-olor: yellow;" "JFP")whih inludes CSS attribute notation within the HTML style attribute.2.2 Disussion of the mirrorAs illustrated in the previous setion (and further disussed in setion 3 and 4)the use of LAML expressions in Sheme ontributes with exible authoring of webdouments. As an additional advantage, the use of the mirror funtions guarantiessyntati orretness (validity). This is due to the following properties of the mirror:1. Use of standard elements only. There is no risk that the LAML authoruses a non-standard HTML element. The reason is that the equivalent Shemefuntions of suh non-standard elements do not exist. The author will be awareof suh a doument anomaly when the doument is proessed.2. Assurane of well-formed results. The generated HTML doument willalways be well-formed. Well-formedness ensures that elements, delimited bytheir start and end tags, are nested properly within one another. It is im-possible to generate an ill-formed doument by using the mirror funtions ofHTML. At the Sheme soure level, the problem of ill-formed douments isonealed by the use of less redundany (no end tags).3. Valid use of attributes. The author will be warned if the HTML attributesare used inappropriately in a doument. A warning is issued when the Shemeprogram is exeuted (at HTML generation time). The attribute hek assuresthat all the required attributes are present, that the no illegal attribute namesare used, and (to some degree) that the type of the attribute values are asspei�ed in the DTD. It is not yet possible to hek the validity of CSSattributes, beause we urrently have no detailed knowledge of CSS in LAML.4. Valid HTML omposition. Using the most reent mirrors of HTML inSheme, the author will be warned or stopped if an invalid HTML doumentis generated. The validation is done on the ground of the element ontentmodels de�ned by the HTML doument type de�nition (DTD).The validation of the doument against the DTD would be in vain if the textualontent of the doument was allowed to ontain HTML tags. Instead of prohibitingthe haraters '<' and '>' in CDATA we translate them to the HTML harater7

www.manaraa.com

entities denoted by < and >. The transliteration is arried out by meansof a systemati mapping of every haraters in the textual ontents of a LAMLdoument. The map is represented by the HTML harater transformation table.Most entries in the table will be identity entries, but besides the haraters men-tioned above it is also useful to translate a variety of other haraters (suh asthe three Danish national haraters `�', `�', and �̀a') to the orresponding HTMLharater entities. It is expeted that LAML users ustomize the HTML haratertransformation table in the LAML init �le (.laml).We see that besides generating the underlying HTML fragments based on a ex-ible Sheme input syntax, the mirror funtions are able to arry out substantialdoument heking `on the y'. Certain anomalies annot our at all, and oth-ers will be identi�ed during the analysis proess preeding the HTML synthesisphase. The atual amount of heking depends on a few boolean variables suhas hek-html-attributes? and validate-html?. Errors are reported through aproedure hek-error, the default value of whih just gives warnings on standardterminal output. Alternatively, the user an rede�ne hek-error to be the Shemeproedure error in order to stop the generation proess in ase of validation prob-lems. In setion 2.3 we will disuss the reation of the mirror funtions, inludingthe implementation of the validation aspets of the mirror.As it appears from the disussion in setion 2.1 we use the run time types ofSheme objets to distinguish between attribute names, attribute values, ontentstrings, list of ontent strings, and white spae suppression. Anomalies are �rstdisovered at run time. This is the usual and well-known onsequene of `dynamityping' whih makes it harder to �nd ertain kind of errors in an early phase ofthe web doument development phase. On the positive side, however, the Lisp andSheme approah to handling of types reates an ideal ground for exible passingof arbitrary parameters to a funtion. This has been of entral importane to thereation of the HTML mirror funtions in LAML, as desribed in setion 2.1, andas suh it has ontributed to the development of the Sheme avor of HTML, asprovided by LAML. In addition, we are able to issue domain spei� error messagesbeause most error messages are ontrolled by the LAML software, as opposed tothe type heker of the ompiler.The exible handling of types is the underlying prerequisite whih enables us towrite expressions like(p 'lass "main""This paper has the following paragraphs:"(map as-string (list 1 2 3 4)) _ ".")where as-string onverts its parameter to a string. The ruial observation is thatinterpretation of the atual parameters depends not only on their run time types,but also on the ontext in whih they appear. To illustrate the latter point, theappliation(p "The" "main" "part of this paper has the following paragraphs:"(map as-string (list 1 2 3 4)) _ "." 'lass "main")8

www.manaraa.com

also passes the string "main" as the seond atual parameter to p, but due tomirror rule number 1 (see setion 2.1) the seond parameter is part of the paragraphontent, beause the preeding parameter is not an attribute name.The mirror of HTML in Sheme ould alternatively be implemented by syntatiabstrations in terms of Sheme maros (Kelsey et al., 1998). Using this solution,it would not be neessary to rely on the run time types of data objets to distin-guish between ontent elements, attributes, and other elements. On the down side,a syntati surfae based on maros will not work well together with higher-orderfuntions (f. the disussion in setion 3). Maros annot play the role of funtionswhen passed as input to, or output from higher-order funtions. In addition, themaro onept of Sheme is not uniformly implemented in all major Sheme imple-mentations, although it has been standardized in the most reent Sheme report(Kelsey et al., 1998). As suh, a mirror based on maros would make it harder touse LAML from many di�erent Sheme systems.As it has been illustrated by several examples above, we simulate a simple key-word parameter mehanism in the HTML mirror funtions. The keyword is rep-resented as a symbol, and the atual parameter of the keyword is the sueedingstring. The keyword parameters are used to pass the HTML attributes names andvalues. The identi�ation of the keywords is done at run time, and as suh it addsan overhead to eah all of an HTML mirror funtion whih is linear in the lengthof the parameter list. The simulated keyword parameter mehanism an be seenas a simple variant of the Common Lisp's inherent keyword parameter mehanism(Steele, 1990).As a pratial aspet of LAML, doument fragments are represented as stringswhih are passed as parameters to mirror funtions and thereby aggregated to theoverall doument. As a onrete illustration, look at the Sheme expression(p "The journal of" (em "funtional programming")_".")whih will be rendered as the HTML fragment<p>The journal of funtional programming.</p>If additional markup is introdued in the expression, suh as(p "The" (b "journal") "of" (em "funtional programming")_".")the string "the journal of" is to be split up in three single word strings of whihthe middle is nested in the b mirror funtion. This auses the following problems:1. The editing problem. In the pratial authoring situation it is error proneto handle the string quoting and the need of string splitting.2. The problem of lexial lutter. The amount of \lexial lutter", primarilythe string quotes, dominates the appearane of the expression. This a�etsthe readability of the doument.The editing problem an be dealt with e�etively by speialized editing om-mands, suh as embed, whih embeds a seleted string in an appliation of aSheme funtion. The embed editing ommand also handles the neessary string9

www.manaraa.com

(element "PRE" "-" "-""(#PCDATA | TT | I | B | U | S | STRIKE | BIG | SMALL | EM | STRONG | DFN |CODE | SAMP | KBD | VAR | CITE | ABBR | ACRONYM | A | IMG | APPLET | OBJECT |FONT | BASEFONT | BR | SCRIPT | MAP | Q | SUB | SUP | SPAN | BDO | IFRAME |INPUT | SELECT | TEXTAREA | LABEL | BUTTON)*-(IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT)" " preformatted text ")(attribute "PRE" (("id" "ID" "#IMPLIED") ("lass" "CDATA" "#IMPLIED")("style" "CDATA" "#IMPLIED") ("title" "CDATA" "#IMPLIED")("lang" "NAME" "#IMPLIED") ("dir" ("ltr" "rtl") "#IMPLIED")("onlik" "CDATA" "#IMPLIED") ("ondbllik" "CDATA" "#IMPLIED")("onmousedown" "CDATA" "#IMPLIED") ("onmouseup" "CDATA" "#IMPLIED")("onmouseover" "CDATA" "#IMPLIED") ("onmousemove" "CDATA" "#IMPLIED")("onmouseout" "CDATA" "#IMPLIED") ("onkeypress" "CDATA" "#IMPLIED")("onkeydown" "CDATA" "#IMPLIED") ("onkeyup" "CDATA" "#IMPLIED")("width" "NUMBER" "#IMPLIED")))Fig. 2: An element and attribute desriptor for the HTML p element.splitting. The editor ommand embed and other similar ommands are available inEmas, and they are disussed in more details in setion 5. We see no good solutionto the seond problem within the ontext of LAML.As already disussed, the HTML mirror funtions return instanes of abstratsyntax trees. Eventually, these trees must be transformed to HTML or XML text(rendering). Earlier versions of LAML had the reputation of ausing heavy garbageolletion due to onatenation of lots of strings in the rendering proess. In themost reent version of LAML we linearize the abstrat syntax trees, either diretlyto an output stream (whih is the best approah if the �nal target is a �le) or into�xed segments of strings whih �nally are onatenated. It is worth notiing thatthis kind of rendering alls for imperative proessing of the abstrat syntax trees.2.3 The reation and organization of the mirrorIt would be a major hallenge to manually reate an aurate mirror of a givenversion of HTML or XHTML. In the LAML system, the mirror of HTML is reatedautomatially from the doument type de�nition (DTD), apart from some aspetsof the full validation analysis whih is explained below.The auray of the HTML mirrors in Sheme depends on full syntatial knowl-edge of the HTML language, as it is represented in the DTD of a partiular HTMLversion. As part of the preparation for LAML, we have written an ad ho DTDparser whih produes lists of element and attribute desriptors, represented aslists. Figure 2 shows and example suh desriptors. As one of the main assets ofthe desriptors, the muh used harater entities (textual maros) in the HTMLDTDs are unfolded, suh that the full information about the elements are availablein single, onvenient representation to be used by the mirror generation tools.Given the unfolded list representation of the DTD, it is relatively straightforwardto automatially synthesize all the Sheme define forms of the mirrors. We also10

www.manaraa.com

(define (html4:em ontents . attributes)(let ((attributes-of-elements attribute-desriptor)(req-n 0))(if hek-html-attributes?(hek-attributes! attributes attributes-of-elements req-n "em"))(if validate-html?(validate-ontents!ontents(zero-or-more "#pdata" "tt" "i" "b" ...)"em"))(if (not ontents)(display-warning ...))(internal-ast-node "em" ontents attributes)))Fig. 3: An outline of the basi mirror funtions of the em element.generate a substantial amount of useful doumentation extrated from the DTD;This information is proessed by the ShemeDo tool (see setion 5) and presentedas manual pages. The validation of the attributes is also easy to deal with on theground of the attribute desriptors.The validation of the HTML doument omposition is the most diÆult partof the analysis. In general it is known to be diÆult to automatially produevalidators from the grammatial model of a DTD. We have hosen an approahwhere the easy and most frequently ourring ases are handled automatially. Theremaining ases are left to speial purpose hekers, whih we write spei�ally fora partiular mirror.The validation of the HTML omposition is based on the ontent models of theelement desriptors (orresponding to `right hand sides of produtions' in ontextfree grammars). In the HTML 4.01 transitional DTD, the majority of the ontentmodels (58 out of the 78 non-single elements) are on one of the forms:"(X | ... | Y)*""(X | ... | Y)+"From the element desriptor shown above it an be seen that the ontent model ofthe pre element is more ompliated. As part of the DTD parsing, we transformthe simple ontent model strings to the lists(zero-or-more "X" ... "Y")(one-or-more "X" ... "Y")respetively. Based on these lauses it is easy to automatially synthesize hekingprediates for these simple elements. The validation of the remaining HTML ele-ments, suh as pre, is done manually by writing prediates for eah of these. Wehad to write 20 suh prediates for HTML4.01.The DTD of HTML4.01 is a ontext sensitive grammar whih uses both generalinlusions and exlusions (Bradley, 1997). Thus, it may be spei�ed that a ertainelement is generally allowed or prohibited in a given HTML fragment. The LAML11

www.manaraa.com

Fig. 4: Three tables produed in setion 3.validator handles exlusions, but not inlusions. As a onsequene, the rarely usedins and del elements, whih a generally allowed in body elements, are not properlydealt with by the LAML HTML validator. As a pratial onsequene, there willbe issued `false warnings' when ins or del elements are enountered within a bodyelement.The HTML mirror funtions are organized in two library �les: the surfae mirrorand the basi mirror. Most users will only be interested in the surfae level (whih isthe one desribed in setion 2.1), but for eÆieny reasons some appliations (suhas CGI programs) an pro�t from the underlying basi mirror. The surfae mirroridenti�es attributes and ontents elements and passes these to the underlying basimirror. Figure 3 shows an outline of basi mirror funtion.3 Programming with the HTML mirror funtionsIn this setion we will illustrate appliations of the HTML surfae mirror togetherwith higher-order Sheme funtions.The HTML table element is an important element, not only for tabular presen-tations, but also for more ompliated typographial arrangements (despite reom-mendations to avoid suh usage in reent HTML spei�ations). Basially, a tableis omposed of a number of tr table row element instanes inside whih eah ellis nested in a td element instane.In a programmati ontext, it is attrative to represent a table as an appropriatedata struture instead of authoring a table with plain nesting of tr and td elementinstanes. Using a Lisp language, it is natural to represent a table as a list of rows,like(list(row "This" "is" "row" "1")(row "This" "is" "row" "2")(row "This" "is" "row" "3")(row "This" "is" "row" "4"))where row is an alias of the list funtion. We will in the following assume thatthe variable sample-table is bound to this struture. The table an be renderedas HTML4.01 by the following expression:12

www.manaraa.com

(table (tbody(map (ompose tr (map td)) sample-table)) 'border "1")The result is shown as the leftmost table in Figure 4. The higher-order funtionompose ombines a number of one-parameter funtions to a single, aggregatedfuntion. The funtion (ompose tr (map td)), whih is applied on eah row inthe table, embeds the elements in the neessary tr and td element instanes. Thesimpliity of the table rendering in Sheme and LAML depends ritially on Rule5 of mirror, whih allows us to pass lists of ontents elements to the HTML mirrorfuntions (see setion 2.1). The table expressions returns a HTML fragment whihis rendered as<table border="1"><tbody><tr><td>This</td> <td>is</td> <td>row</td> <td>1</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>2</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>3</td> </tr><tr><td>This</td> <td>is</td> <td>row</td> <td>4</td> </tr></tbody></table>Notie here that the Sheme map funtion, whih requires two or more parameters(a funtion an a number of lists) is generalized to aept only a single parameter(the funtion). With this, an expression like (map td) is a td mapper. To obtainthis generalization we rede�ne map as(define map (urry-generalized map))where urry-generalized is a higher-order funtion (part of the general LAMLlibrary) whih performs ad ho urrying of a funtion, whih normally requires atleast two parameters:(define (urry-generalized f)(lambda rest(ond ((= (length rest) 1)(lambda lst (apply f (ons (ar rest) lst))))((>= (length rest) 2) (apply f rest)))))In order to illustrate the exibility of handling tables as lists of rows, we willassume that we deide to swith the �rst and seond olumn of the table. Insteadof re-arranging the table as suh, we write the funtion swith whih does the job:(define (swith row-lst)(ons (seond row-lst)(ons (first row-list)(ddr row-list))))(table (tbody(map (ompose tr (map td) swith) sample-table)) 'border "1")13

www.manaraa.com

The result is shown in the middle table of Figure 4.The versatility of the Sheme HTML mirror allows us to exploit the HTML tdattributes of the table ells diretly. Here is an example where we olorize thebakground of the numeri ells, and where we join two ells in the upper leftmostorner of the table:(define (grey-numeri x)(if (and (string? x) (numeri-string? x))(list x 'bgolor (rgb-olor 200 200 200))x))(table'border "1"(tbody(map (ompose tr (map (ompose td grey-numeri)))(list(row (ell "This" 'rowspan "2") "is" "row" "1")(row "is" "row" "2")(row "This" "is" "row" "3")(row "This" "is" "row" "4")))))The ell funtion is again just an alias of list. The resulting table is shown asthe rightmost table of Figure 4.It is often useful to de�ne a variant of an HTML mirror funtion whih bindsertain attributes to �xed values. This an be done by use of the higher-orderfuntion modify-element. Let us, as an example, assume that we wish to bind thetarget attribute of the a element to the �xed value "main" and the title attributeto a �xed explanation:(define a-main(modify-element a'target "main" 'title "Goes to the main window"))The higher-order funtion modify-element an be de�ned as(define (modify-element element . attributes-and-ontents)(lambda parameters(apply element (append parameters attributes-and-ontents))))From this we see that we an also bind parts of the ontent elements if this shouldturn out to be useful. With this funtion(a-main 'href "http://www.ds.glasgow.a.uk/jfp" "JFP")will be rendered asJFP14

www.manaraa.com

In onlusion we �nd that the ombination of HTML mirror funtions in LAMLand higher-order funtions (general as well as more speialized ones) provide elegantand powerful solutions to Sheme programmers, who do web development withLAML. 4 Raising the level of abstrationIn the previous setion we have illustrated that it is possible to write HTML dou-ments by using the HTML mirror funtions together with a number of higher-orderfuntions. As pointed out already in setion 2, the real potential of the LAML ap-proah is to develop layers of abstration on top of the HTML mirror funtions.We will now disuss this key aspet of LAML.4.1 Simple ad ho abstrationsLet us use the example from Figure 1 as a starting point. In setion 2 we observedthat it is unlikely that we will write douments with pure HTML markup in Shemesyntax. We now introdue a number of simple abstrations leading to the doumentsoure shown in Figure 5. The applied abstrations an be summarized as follows:1. The funtion html-doument implements the standard doument preamble(inluding appliation of the html, head, title, and body elements) togetherwith an appliation of the h form with the same ontent as the doument title.Use of this funtion ensures a proper wrapping of the main ontents into aplain and simple HTML envelope.2. The funtion a-href whih turns the anhor a element into a funtion (withpositional parameter orrespondene) of exatly two parameters. Use of thisfuntion ensures proper use of an URL href attribute in the a element, whihis not a required HTML attribute.3. The funtion kn, whih is the author's signature funtion that returns hisname, email address, home page, et. This funtion allows the typial dou-ment trailer to be de�ned one and for all. The LAML init �le, .laml, is thenatural loation of this funtion.Eah of these funtions adds a bit of onveniene for the web author. Seen togetherthe use of suh funtions ease the task of the pratial web author. Some of thefuntions are simple \one shot" funtions to be used in a single doument only.Many of the funtions, however, are generally useful and an therefore be organizedin libraries whih are loaded initially. We have aumulated a substantial olletionof suh funtions, and organized them in the so-alled LAML onveniene library.We realize that many of the onveniene funtions are primarily valuable for theauthor who oneived them, and we therefore reommend the de�nition of personalLAML onveniene olletions. 15

www.manaraa.com

(load (string-append laml-dir "laml.sm"))(laml-style "simple-html4.01-transitional-validating")(define (html-doument ttl . real-body)(html (head (title ttl)) (body (h1 ttl) real-body)))(define (laml-paper-url suffix)(string-append "http://www.s.au.dk/~normark/laml/papers/" suffix))(define (a-href url anhor-text)(a 'href url anhor-text))(write-html '(pp)(html-doument"WEB Programming in Sheme - the LAML approah"(p "The paper"(a-href (laml-paper-url "jfp.pdf")(em "WEB Programming in Sheme - the LAML approah"))"authored by Kurt Nrmark is written for people who areinterested in funtional programming. The"(a 'href "abstrat.html" "abstrat") "is available as a separate page.")(p "The paper ontains the following setions:")(ol(li "Introdution")(li "Markup language mirroring")(li "Programming with the HTML mirror funtions")(li "Raising the level of abstration")(li "LAML overview")(li "Refletions and similar work")(li "Conlusions"))(p "There exists other papers about LAML, suh as:")(ul(li (a-href (laml-paper-url "www2002/p296-normark.html")"Programmati WWW authoring using Sheme and LAML")))(kn))) Fig. 5: A sample LAML doument with onvenient abstrations.4.2 Domain spei� Lisp languagesDevelopment of omplex web pages and sites all for use of more powerful abstra-tion ideas than de�nition of a few onveniene funtions that help out at designatedloations in a single HTML doument. In these situations it is attrative to designa new language with means of expressions that �t well with the onepts of thedomain in question. In this setion we will disuss and give examples of domainspei� web language designed on the ground of s-expressions and parenthesizedpre�x notation ala Lisp and Sheme.One of the most substantial LAML-based languages, alled LENO, has beendeveloped for the domain of web-based teahing material. LENO is desribed and16

www.manaraa.com

(note-page 'laml-basis(title "LAML basis""On this page we desribe LAML briefly")(point"LAML brings HTML and XML to the Sheme programming language""LAML is software pakage that supports authoring of HTMLand XML douments in Sheme Syntax.")(onept-list(onept "LAML""LAML is a Lisp Abstrated Markup Language""LAML onsists of HTML mirrors, doument styles, and tools"))(items(item "LAML Charateristis""We here mention a number of important LAML harateristis"(items(item "Supports a number of different HTML mirrors"""(items(item "LAML 4.0 loose.XHTML1.0 strit, transitional, and frameset")))(item "Supports a number of doument styles"""(items(item "Domain speifi WEB languages")(item "LENO, Sheme manual pages, questionnaire, ..."))))))(index-words "LAML" "mirror" "LENO"))Fig. 6: A LENO note page in the original syntaxdisussed in separate papers (N�rmark, 2001b; N�rmark, 2000). Figure 6 shows anexample of a LENO soure doument fragment. The fragment represents a singlenote page with with title, point, onept-list and index-words sublauses. Anote page gives rise to a number of di�erent underlying HTML pages that representthe note page at di�erent levels of abstrations.There are several di�erent ways to implement a domain spei� web language inSheme:1. Via funtional abstration in Sheme. Eah new language onstrut isde�ned by a funtion. As an impliation, eah onstituent of an expression isevaluated uniformly and eagerly.2. Via syntatial abstration in Sheme. Eah new language onstrut isde�ned by a Sheme maro. With this approah, the surfae syntax an bede�ned more freely, and without uniform evaluation of all onstituents of alanguage onstrut.3. Via interpretation of a new list-based language. The new language isimplemented by an interpretor written in Sheme. Using this approah, thelanguage designer has full freedom to design the language as wanted.17

www.manaraa.com

Using the �rst and seond approah the interpretation is done by the Shemeproessor, and as suh it is trivial to mix Sheme fragments with fragments of thedomain spei� web language. This provides for a avor of web authoring whihwe all programmati authoring (N�rmark, 2001a). Using these approahes, pro-grammed solutions an be used anywhere in a web doument, and it an be usedat any time during the development proess.LENO and other similar LAML-based web languages have all been implementedvia funtional abstration in Sheme. The surfae syntax of a onept is typiallyestablished by a funtion of the form:(define (. p) (make-element ' p))where make-element reates a tagged list struture with the given onstituents, asbound to the formal rest parameter p. Funtions applied at the outer level, suhas note-page in LENO, take responsibility of interpreting the nested and taggedstrutures.The original version of LENO, as illustrated in Figure 6, uses surfae funtionswith positional parameter orrespondene, and the surfae funtions aept only a�xed number of parameters. Reently, we have reengineered LENO to support amore exible syntax similar to the surfae syntax of the HTML mirror funtions(see setion 2.1). This syntatial surfae is alled XML-in-LAML, and as the namesuggests the syntax is ompatible with the generi XML syntax (Consortium, 1998).Figure 7 shows the example from Figure 6 in XML-in-LAML syntax.The XML-in-LAML syntax is more exible with respet to support of additionalattributes than the original surfae syntax of LENO. On the downside, the formatis more verbose than the original LENO format, and as suh it alls for de�nitionof extensive editor templates to be ompetitive with the more puri�ed Shemesyntax. Also, it is quite elaborate to introdue lists of sublauses in an XML-in-LAML doument. As an example from LENO, we denote a list of index wordsas(index-words(index-word "first")(index-word "seond"))We need to de�ne the element index-word to aommodate individual index words.If we aept Lisp lists as a separate means of expression, we ould just write(index-words (list "first" "seond"))This, however, would harm the one-to-one orrespondene between XML and XML-in-LAML.If desired, it is straightforward to translate a LENO XML doument to the inter-nal doument representation of LENO, using an XML parser. It is not part of ourplans to utilize this possibility. We �nd it more attrative to author web doumentsin the ontext of Sheme (programmati authoring) than in the stati poverty ofXML. 18

www.manaraa.com

(note-page 'id "laml-basis"(title(main-text "LAML basis ")(annotation "On this page we desribe LAML briefly"))(point(main-text "LAML brings HTML and XML to the Sheme programming language")(annotation "LAML is software pakage that supports authoring of HTMLand XML douments in Sheme Syntax."))(onept-list(onept'onept-name "LAML"(main-text "LAML is a Lisp Abstrated Markup Language")(annotation "LAML onsists of HTML mirrors, doument styles, and tools")))(items(item(main-text "LAML Charateristis")(annotation "We here mention a number of important LAML harateristis")(items(item(main-text "Supports a number of different HTML mirrors")(items(item (main-text "LAML 4.0 loose.XHTML1.0 strit, transitional, and frameset"))))(item(main-text "Supports a number of doument styles")(items(item (main-text "Domain speifi WEB languages"))(item (main-text "LENO, Sheme manual pages, questionnaire, ...")))))))(index-words (index-word "LAML") (index-word "mirror") (index-word "LENO")))Fig. 7: The LENO note page from Figure 6 using the XML-in-LAML syntax.Using the XML-in-LAML syntax we an think of our douments as XML do-uments in slightly di�erent surfae syntax than that of an SGML language. Mostdi�erently, we have to aept that all string ontents are passed as quoted strings.But as for LAML douments using the HTML mirror funtions (like in Figure 1)we do not want to stay at this level. We wish to mix programmati means (not leasthigher-order funtions) with the XML-in-LAML funtions, exatly as illustrated insetion 3, and we also wish to be able to introdue ad ho abstrations, like insetion 4.1.It is worth a onsideration what should be the value of the note-page expressionin Figure 7 or one of its subexpressions. LENO takes a very pragmati stand on thisissue, beause the note-page expression auses reation of a number of underlyingHTML pages, or ontributions to HTML pages. As suh note-page is not a fun-tion, but a proedure. Thus, in LENO, the implementation of the XML-in-LAMLabstrations diretly realizes a non-trivial transformation from the domain-spei�language to a set of HTML �les. Alternatively, we ould hose an intermediate lan-19

www.manaraa.com

guage as target of the XML-in-LAML funtions, muh like the abstrat syntax treesgenerated by the validating HTML mirror funtions (see setion 2.1). Suh a repre-sentation would serve as a anonial representation of the soure doument, whereevaluation of ad ho abstrations and outer higher-order funtions have alreadytaken plae. 5 LAML OverviewIn this setion we will in relative brief terms desribe the LAML system, with speialemphasis on the aspets that do not pertain to the HTML mirrors.It has been a goal to support the LAML system on a number of major platforms,operating systems, and not least Sheme Systems. LAML assumes ompliane withthe fourth revised Sheme Report, R4RS, whih is supported by almost all im-plementations of Sheme. LAML omes with its own general library of funtions,instead of relying on one of the non-standard set of libraries, suh as SLIB (Jaf-fer, 2002) or PLT's libraries (Flatt, 2000). In order to use LAML it is neessarysomehow to implement between 6 and 9 non-standard funtions and proedures(most important urrent-time, sort-list, file-exists?, diretory-exists?,delete-file, and opy-file). Most Sheme systems already support these fun-tions, perhaps using other funtion names or parameters. LAML is on�gured to agiven platform, operating system, and Sheme system by running a Sheme instal-lation program, whih takes a on�guration desription (in terms of an assoiationlist) as input. 5.1 LAML doument stylesA LAML doument style represents a domain spei� Lisp language, as disussed insetion 4.2. We have already desribed the LENO doument style (see setion 4.2).The manual doument style is a little language for interfae desription of Shemelibraries. The manual doument style is used together with the ShemeDo tool (seesetion 5.2) and as suh it plays a entral role for the doumentation of the LAMLlibraries. The questionnaire doument style is another little language for formulationof questionnaires on the web. The questionnaire doument style is aompanied bya set of CGI programs for registration and presentation of the questionnaire answersat di�erent levels of abstrations. The ourse home page doument style supports ahigh level desription of a series of letures in a university ourse (N�rmark, 2000).The proessing of the ourse home page doument produes a ourse alendar, anumber of ourse overviews, and leture spei� pages.5.2 LAML toolsThe LAML system supports a number of web related and Sheme related tools. TheSheme Eluidator is a LAML based tool for Eluidative Programming (N�rmark,2000b; N�rmark, 2000a) suh as doumentation of internal aspets of a Shemeprogram. ShemeDo is a tool that extrats interfae omments from a library of20

www.manaraa.com

Sheme proedures. As the name indiates, ShemeDo is similar to the JavaDotool (Friendly, 1995). ShemeDo works in onert with the manual doument style.The alendar tool generates a web alendar. The alendar tool is based on a LAMLtime library. The LAML Bibtex tool is able to parse simple bibtex �les (Lamport,1986) to assoiation lists, and to render these as HTML fragments. LAML alsoomes with XML and HTML parsing and pretty printing tools and a Sheme prettyprinting tool. In addition, there are a number of internal LAML tools for DTDparsing and mirror generation.5.3 Environmental supportExeution of a LAML program is plain and normal Sheme exeution with a tinybit of environmental information de�ned. The environment information amounts tothe urrent diretory and the name of the urrent soure �le. In addition, the LAMLSheme interpretator must know the loation of the LAML installation (laml-dirwhih is an absolute path to the LAML diretory) suh that a entral �le laml.sm�le an be loaded.LAML an be ativated from the operating system's ommand prompt, from aninterative Sheme prompt, and from Emas. For Emas users, the latter possibilityis the most attrative; Via the \laml" �le extension and an Emas mode, LAML�les an be proessed asynhronously and synhronously by di�erent Emas om-mands, suh as laml-proess-urrent-bu�er. This ommand is bound to a singlekeystroke (defaulted to C-o) and it is also available in a menu of LAML relatedommands. Within Emas it is also possible to start an interative LAML ses-sion with the ommand run-laml-interatively. This de�nes the environmentalinformation, and it loads the HTML mirror funtions and other useful libraries.5.4 CGI Programming in LAMLWe have done a large amount of CGI programming in Sheme using the LAML CGIlibraries together with the HTML mirror libraries. As a historial remark, LAMLwas initiated with the purpose of supporting CGI programming in Sheme. Sinethen we have realized that LAML is useful for prodution of stati web pages aswell.The most substantial CGI appliation is a distane eduation environment (IDA-FUS) whih has been in daily use at the Computer Siene Department of AalborgUniversity sine the fall of 1999. The LAML CGI libraries provide for deoding ofURL enoded and multipart enoded data, as submitted via the so-alled POSTmethod in the CGI. The deoded data are represented as assoiation lists in Sheme.(As a side e�et, uploaded �les are opied to a destination in the server's �le sys-tem). Similarly, assoiation lists an be linearized and URL enoded via a funtionin the CGI libraries.The CGI support of LAML is fairly simple and straightforward. It has not beena goal to hide the details of the CGI protool for the LAML programmer. In thatrespet, the LAML CGI support runs ounter to Meijer's CGI framework in Haskell21

www.manaraa.com

(Meijer, 2000), whih elegantly protets the a Haskell programmer from most id-iosynrasies of the Common Gateway Interfae.6 Reetions and Similar WorkWe will �rst disuss similar work in the area of Haskell, ML, Erlang, and Curry.Following that we will disuss similar work related to Sheme. We onlude withsome reetions on stati versus dynami typing.6.1 Web Programming in Haskell and related languagesWallae and Runiman (1999) disuss two di�erent representations of XML do-uments in Haskell. The �rst is based on a generi tree representation of XMLdouments. The seond is based on typed doument fragments, where the DTDgives rise to a number of algebrai type de�nitions in Haskell. The driving forebehind the seond approah is validation of XML douments via stati type hek-ing of the Haskell XML programs. The authors ontribute with a olletion ofhigher-order funtions (ombinators) that are intended to ease the proessing ofXML douments from Haskell. The LAML approah is loated in between the twoapproahes introdued by Wallae and Runiman. The mirror funtions in LAMLare primarily oriented towards HTML, and they are derived from the DTD. XML-in-LAML douments are urrently not derived from a DTD. In addition, LAML isnot geared towards general transformation of XML douments, but rather towardsspei� transformation of XML-in-LAML douments to HTML.Meijer and olleagues have in a number of papers dealt with aspets of web pro-gramming using Haskell. In the �rst of these a Haskell framework for CGI program-ming is presented (Meijer, 2000). As already mentioned in setion 5.4, the HaskellCGI framework hides the low level CGI details from the Haskell programmer. Thepaper also presents a modelling of HTML (similar to the generi tree representa-tion of Wallae and Runiman) together with a rudimentary layer of HTML surfaesyntax (alled `HTML ombinators'). In omparison, the LAML CGI support is ata lower and more basi level, but the HTML modelling in LAML is more advanedand omplete than Meijer's.In a seond paper, Meijer and Shields (2000) de�ne a new language alled XM�whih is indented for generation of dynami XML douments. As desribed in thepaper, XM� is not yet ompletely de�ned. XM� is based on the point of view thatprogrammati XML expressions, in whih the textual ontent is written and passedas quoted strings, is intratable. Therefore XM� deals with verbatim XML dou-ments in whih program fragments are esaped. Program fragments are expressedin a language similar to Haskell, but as an important extension, verbatim XMLfragments are part of the language. In omparison, LAML is based on program-mati notation, and textual ontents are passed as quoted strings. We have in thispaper desribed the virtues of this approah, and we have argued against a mixingof HTML/XML fragments and (esaped) program fragments.In a third paper, Meijer and van Velzen (2001) desribe HSP (Haskell Server22

www.manaraa.com

Pages). HSP is similar to ASP, PHP, JSP, and others. As suh, HSP douments areHTML/XML douments with esaped Haskell expressions. In ontrast to ASP, it ispossible in HSP to mix HTML/XML and Haskell fragments in ways that preservethe priniple of abstration (HSP douments are ompositional). Tehnially, XMLfragments are added as atomi expressions and patterns to Haskell. As suh, HSPbuilds on the same ideas as XM�.Thiemann (2000) desribes another modelling of HTML in Haskell. Eah HTMLelement and eah HTML attribute orrespond to its own datatype in Haskell. Themodelling is based on type lasses in Haskell and an overloaded add funtion whihaggregates HTML fragments into eah other. As suh, the syntatial ompositionof HTML douments does not resemble the syntax of HTML. Thiemann's approahalways gives well-formed HTML douments, but it is not powerful enough to guar-anty full doument validity on a stati type heking basis. The derivation of thenumerous datatypes for elements and attributes alls for an automati derivationof these from the DTD of HTML. As reported in the paper, this work has not yetbeen ompleted.Hanus (2001) desribes a funtional/logial web programming framework for thelanguage alled Curry. This work is based on a straightforward modelling of HTMLas Curry data strutures. As the main ontribution in this work, HTML formexpressions and the handling of form input are desribed together. This is a ontrastto the fragmentation of onventional CGI web programs. Hanus also shows how tomake use of aspets from the logial programming paradigm. High level Curry webprograms are transformed automatially to programs that use the CGI.With respet to SML, we are aware of Neumann's fxp parser for XML (Neumann,1999). In addition, Sestoft and olleagues have implemented ML server pages (Ses-toft, 2002), whih is similar to ASP, JSP, PHP, and HSP. In the funtional pro-gramming language Erlang, XMerL provides an Erlang modelling of XML (Wiger,2000). 6.2 Web Programming in ShemeIt is interesting to notie that Sheme via DSSSL has played a relatively earlyrole in the proessing of SGML doument. DSSSL (whih means Doument StyleSemantis and Spei�ation Language) is an ISO standard for speifying doumenttransformation and formatting.BRL is a language designed for server-side WWW-based appliations (Lewis,2000). BRL allows the WWW author to ativate Sheme at designated plaes inan HTML doument. The plaes are identi�ed with square brakets. As suh, aBRL program mixes fragments of HTML with fragments of Sheme. The Shemeprogram fragments within the square brakets are exeuted on the WWW server,using a slightly non-standard Sheme semantis. BRL is partiularly strong withrespet to aess of a relational database on the server side.Latte (Glikstein, 1999) is mixture of the Latex text formatting system andSheme, at least at the oneptual level. In Latte, the author uses a Latex-likemarkup style. Most interesting, however, Latte mirrors a language similar to Sheme23

www.manaraa.com

in the markup framework. This means that it is possible to make programmationtributions to a Latte doument by writing Sheme de�nitions in a Latex syntax.As an alternative to XSLT (Adler, 2000) Krishnamurthi et al. (2000) have pro-posed a similar XML transformation framework alled XT3D. The XT3D work isbased on the idea of `transformation by example', whih in turn is rooted in thework on a maro faility for Sheme done by Kohlbeker (1986). Like XSL andXSLT, the languages involved in XT3D are all XML languages with Sheme usedat an internal level.Sheme has been used in other web programming ontexts as well. Queinne(2000; 2001) uses the onept of ontinuations to support sessions on the web server.Instead of omposing a server program of many state-less CGI programs, Queinnereommends the use of a single Sheme program whih in a oroutine-like fashionan be resumed when input is reeived from the lient. Resumption points arehandled by means of ontinuations. The major hallenge in this work is to providefor persistene of the ontinuations on the server. Graunke et al. (2001a) work on asimilar problem in the ontext of the PLT Sheme system. In their work, however,the goal is automatially to transform an interative program to a set of CGIprograms. Like in Queinne's work the ontinuation onept plays an importantrole, but the programmer is not required to use it expliitly. As an interestingvariation, Graunke et al. rely on persistent ontinuations kept at the lient side.Besides CGI related work, Sheme is also used for more dediated WWW servers.The PLT group has demonstrated that exellent performane an be obtained bya WWW server written exlusively in Sheme (Graunke et al., 2001b). As thedownside of this approah, the servies provided by a more onventional web serverare not available. As a onsequene of this observation we work on Sheme-basedLAML module alled SLAML (Hansen et al., 2002) for the Apahe web server.6.3 Stati versus dynami typingSheme's use of dynami typing stands as a ontrast to stati typing, as used inmost other funtional programming languages.Although we fully aknowledge the ideals of earliest possible identi�ation oferrors we would like to point out that� even with stati type heking there will most likely be other kinds of errorsthat annot be identi�ed before run time (test time). Erroneous use of datarelative to the stati types of funtions is a relatively trivial problem omparedto these more severe errors.� funtions with stati type heking provide for less exibility than funtions inSheme. It would be diÆult to mimi the onventions of the HTML Shememirror funtions in an existing funtional programming language, and bothkeeping the advantages of stati type safety and notational elegane.Taking an overall look the web-oriented literature that relates the funtional pro-gramming paradigm, we �nd that the problem of type heking is overemphasized.Doing web work in a funtional ontext is oriented towards the reation of high24

www.manaraa.com

quality web material; It is not entirely a game related to �nding errors as early aspossible in the development proess.Due to the use of `dynami typing' the LAML author must be aware that sometype errors are identi�ed at a late point in time, and that there is a risk that typeerrors will remain in the software. From the experiene of the author (who have usedLAML extensively and exlusively for all his web work the last four years) this hasnever been a major problem|at least not ompared to the other problems whihinevitably are experiened when dealing with development of non-trivial software.7 ConlusionsWith the use of LAML, the Sheme programming ommunity an take advantageof the ideas of funtional programming, both for everyday web prodution needsand for more speialized and demanding web prodution tasks. The latter alls forde�nition of domain-spei� Sheme-based languages that parallels the de�nitionof XML languages. Use of LAML brings funtional programming power to the �n-gertips of the web developer at every loation of the doument, and at every time inthe development proess. Using the Emas LAML support, the pratial proessingof a LAML doument is onveniently streamlined. Using XML as an alternative,the omputational power needs to be brought in via use of external tools. Suhexternal tools typially apply new, limited and speially developed programmingframeworks, suh as XSL (Adler, 2000), as an alternative to well-proven, generalpurpose languages.As a harateristi property, LAML makes markup aspets available through themeans of the programming language. The use of the funtional paradigm is in goodaord with the desriptive nature and ideals of most markup languages. A LAMLuser is a programmati author beause the doument soure is an ordinary Shemeprogram. The LAML server side programmer is also writing Sheme programs,serving in another ontext than a `stati LAML doument'. Most other systemsmake use of a mixed approah. Typially, the outer ontext is an XML or HTMLdoument, in whih piees of programs are surrounded by partiular tags.In server side programs, we frequently enounter an outer ontext of programonstruts in whih HTML fragments are loated as strings. Imperative server pro-grams bring this to an extreme in whih pre�x or suÆx parts of well-formed HTMLlauses are printed in print ommands. In this paper we have argued against themixing of programming notation and markup notation.In the other extreme there exist programmati frameworks that are moved intothe XML markup language. XSL (Adler, 2000) is a well-known example of fun-tional nature. The XT3D work (Krishnamurthi et al., 2000) mentioned in setion6.2 and the Lisp inspired SEXPR proposal (Niol, 2000) are other examples. Suhlanguages run ounter to our aestheti desires of a good programming notation, inpart beause of the verbosity implied. Moreover we are onvined that SGML wasnever envisioned as a syntatial framework for programming languages.LAML is available as free software from the LAML homepage (N�rmark, 1999b).25

www.manaraa.com

ReferenesAdler, Sharon. 2000 (November). Extensible stylesheet language (XSL) version 1.0. Teh.rept. W3C.Bos, Bert, Lie, H�akon Wium, Lilley, Chris, & Jaobs, Ian. 1998 (May). Casading stylesheets, level 2 CSS2 spei�ation. Teh. rept. W3C.Bradley, Neil. (1997). The onise SGML ompanion. Addison-wesley.Consortium, World Wide Web. 1998 (February). Extensible markup language (xml) 1.0.http://www.w3.org/TR/REC-xml.Coombs, James H., Renear, Allen H., & DeRose, Steven J. (1987). Markup systems andthe future of sholarly text proessing. Communiations of the ACM, 30(11), 933{947.Eugene E. Kohlbeker, Jr. 1986 (August). Syntati extensions in the programming lan-guage lisp. Ph.D. thesis, Indiana University. Tenial Report no. 199.Flatt, Matthew. 2000 (August). PLT mzsheme: Language manual. http://www.s.rie.-edu/CS/PLT/pakages/pdf/mzsheme.pdf.Friendly, Lisa. (1995). The design of distributed hyperlinked programming doumenta-tion. Frass, Sylvain, Garzotto, Frana, Isakowitz, Toms, Nanard, Joelyne, & Nanard,Mar (eds), Proeedings of the international workshop on hypermedia design (iwhd'95),montpellier, frane.Glikstein, Bob. (1999). Latte|the language for transforming text. Loated onhttp://www.latte.org/.Graunke, Paul, Findler, Robert Brue, Krishnamurthi, Shriram, & Felleisen, Matti-has. (2001a). Automatially restruturing programs for the web. Available fromhttp://www.s.neu.edu/sheme/pubs/.Graunke, Paul, Krishnamurthi, Shriram, der Hoeven, Steve Van, & Felleisen, Matthias.(2001b). Programming the web with high-level programming languages. Pages 122{136of: Sands, D. (ed), 10th european symposium on programming, ESOP 2001. LetureNotes in Computer Siene, no. 2028. Springer Verlag.Hansen, Mikael, Iversen, Paw, & Junker, Jimmy. 2002 (January). SLAML - server sideLAML. Preliminary master thesis report. Available from http://www.s.au.dk/-�normark/laml/.Hanus, Mihael. (2001). High-level server side web sripting in Curry. Pages 76{92 of:Ramakrishnan, I.V. (ed), Pratial aspets of delarative languages, lns 1990. LetureNotes in Computer Siene. Third International Symposium, PADL 2001, Las Vegas,Nevada: Springer Verlag.Ja�er, Aubrey. (2002). SLIB - the portable sheme library version 2d3. http://www-swiss.-ai.mit.edu/�ja�er/slib.pdf.Kelsey, Rihard, Clinger, William, & (editors), Jonathan Rees. (1998). Revised5 reporton the algorithmi language Sheme. Higher-order and symboli omputation, 11(1),7{105.Krishnamurthi, Shriram, Cray, Kathryn E., & Graunke, Paul T. (2000). Transformation-by-example for XML. Pages 249{262 of: Pontelli, E., & Costa, V. Santos (eds), Padl2000. Springer Verlag.Lamport, Leslie. (1986). Latex user's guide and referene manual. Addison-Wesley Pub-lishing Company.Lewis, Brue R. 2000 (Otober). BRL|a database-oriented language to embed in HTMLand other markup. Loated on http://brl.soureforge.net/.Meijer, Erik. (2000). Server side web sripting in Haskell. Journal of funtional program-ming, 10(1), 1{18.Meijer, Erik, & Sheilds, Mark. (2000). Xm� - a funtional language for onstruting and26

www.manaraa.com

manipulating XML douments. Submitted to USENIX Annual Tehnial Conferene2000. Available via http://www.se.ogi.edu/�mbs/pub/xmlambda/.Meijer, Erik, & van Velzen, Danny. (2001). Haskell server pages - funtionalprogramming and the battle for the middle tier. Eletroni notes in the-oretial omputer siene 41, no. 1. Elsevier Siene B.V. Available viahttp://www.elsevier.nl/loate/ents/volume41.html.Neumann, A. (1999). fxp - Proessing Strutured Douments in SML. Trinder, P., &Mihaelson, G. (eds), 1st Sottish Funtional Programming Workshop, Draft Proeed-ings. Herriot-Watt University, Edinburgh, Sotland.Niol, Thomas. 2000 (November). XEXPR - a sripting language for XML. W3C noteloated at http://www.w3.org/TR/.N�rmark, Kurt. (1999a). The Eluidative Programming Home Page. http://www.s.-au.dk/�normark/eluidative-programming/.N�rmark, Kurt. (1999b). The LAML home page. http://www.s.au.dk/�normark/-laml/.N�rmark, Kurt. (2000a). Eluidative programming. Nordi journal of omputing, 7(2),87{105.N�rmark, Kurt. 2000b (May). An eluidative programming environment for Sheme.Pages 109{126 of: Proeedings of NWPER'2000 - nordi workshop on programmingenvironment researh. Available via (N�rmark, 1999a).N�rmark, Kurt. (2000). A suite of WWW-based tools for advaned ourse management.Pages 65{68 of: Proeedings of the 5ht annual sigse/sigue onferene on innovationand tehnology in omputer siene eduation. ACM Press. Also available from http:-//www.s.au.dk/�normark/laml/.N�rmark, Kurt. 2001a (November). Programmati WWW authoring using Sheme andLAML. To be presented at the web engineering trak of WWW2002. Also available via(N�rmark, 1999b).N�rmark, Kurt. 2001b (November). Web based leture notes - the LENO approah. Sub-mitted for publiation. Also available via (N�rmark, 1999b).N�rmark, Kurt. (2002). A olletion of LAML examples. WEB material available athttp://www.s.au.dk/�normark/sheme/examples/jfp/index.html.Queinne, Christian. (2000). The inuene of browsers on evaluators or, ontinuations toprogram web servers. Pages 23{33 of: Proeedings of the �fth am sigplan internationalonferene on funtional programming. ACM Press.Queinne, Christian. 2001 (May). Inverting bak the inversion of ontrol or, ontinuationsversus page-entri programming. Teh. rept. Tehnial Report 7, LIP6. Universit�e Paris6.Sestoft, Peter. (2002). ML server pages (version 1.1). http://ellemose.dina.kvl.-dk/�sestoft/msp/.Steele, Guy L. (1990). Common lisp, the language, 2nd edition. Digital Press.Tennent, R.D. (1981). Priniples of programming languages. Prentie Hall.Thiemann, Peter. (2000). Modeling HTML in haskell. Pages 263 { 277 of: Pontelli, E.,& Costa, V. Santos (eds), Pratial aspets of delarative languages, ln 1753. LetureNotes in Computer Siene. Seond International Workshop, PADL 2000, Boston, MA,USA: Springer Verlag.Wallae, Malolm, & Runiman, Colin. (1999). Haskell and XML: Generi ombinatorsor type-based translation? Pages 148{159 of: Proeedings of the ACM SIGPLAN in-ternational onferene on funtional programming. Published in Sigplan Noties vol 34number 9. 27

www.manaraa.com

Wiger, Ulf. 2000 (Otober). XMerL - interfaing XML and Erlang. Sixth InternationalErlang/OTP User Conferene. http://www.erlang.se/eu/00/.

28

